Post translational modifications

Da
Da
Name Description ImageLeft ImageRight pKa1 pKa2 pKa3 NativeCharge Loss Gain Deltamass UVSpec Hydrophobicity ModOnAA Pattern
Custom
Create your own modification.
None None None Av: 0 M: 0
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
N-Glycosylation
None None None H2O Av: 18.0153 M: 18.0106
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
N N(?=[^P][ST])
Pyroglutamic Acid
Pyroglutamate formation occurs through the rearrangement of the originally synthesized glutamine residues at the N-terminus.
Pyroglutamic Acid reactants Pyroglutamic Acid products None None None NH3 Av: -17.0305 M: -17.0265
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
4 Q, ^ ^(?=Q)
Disulfide bond
By default Prot pi handels proteins assuming all cystein side chains are reduced to free sulfhydryl. Disulfide bonds are usually formed in proteins secreted to the extracellular medium. Therefore disulfide bonds can be specified as a modification, so that cystein is treated as halfcystine.
Disulfide bond reactants Disulfide bond products None None None H Av: -1.0079 M: -1.0078
λ / nm ε / M-1 cm-1
214 670
240 187
245 193.5
250 193
255 180.5
260 157.5
265 136
270 107
272 97.5
274 87.5
276 80
278 70
280 62.5
282 55
284 47.5
286 42.5
288 36.5
290 31.5
292 27
294 25
296 21.5
298 18
300 15.5
302 14.5
304 12
306 10
308 7.5
310 5
312 2.5
314 0
316 0
318 0
320 0
C
Alkylation (iodoacetamide)
Iodoacetamide reacts covalently with the side-chain thiol group of cysteine. It is often used to modify SH-groups to prevent the re-formation of disulfide bonds after the reduction of cystine residues to cysteine.
Alkylation (iodoacetamide) reactants Alkylation (iodoacetamide) products None None None H C2H4NO Av: 57.0514 M: 57.0215
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
-3.8 C
Alkylation (iodoacetic acid)
Iodoacetic acid reacts covalently with the side-chain thiol group of cysteine. It is often used to modify SH-groups to prevent the re-formation of disulfide bonds after the reduction of cystine residues to cysteine.
Alkylation (iodoacetic acid) reactants Alkylation (iodoacetic acid) products Acidic 3.2 None None H C2H3O2 Av: 58.0362 M: 58.0055
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
-1.7 C
Deamidation (asparagine)
Nonenzymatic deamidation of asparagines is a common modification of proteins. Deamidation proceeding through the formation fo succinimide intermediate followed by hydrolysis results in the formation of isoaspartate and aspartate in a molar ratio of apporximately 3:1.
Deamidation (asparagine) reactants Deamidation (asparagine) products Acidic 4.07 None None NH3 H2O Av: 0.9848 M: 0.984
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
4.08 N
Glycation (glucose)
Glycation is the result of typically covalent bonding of a protein with a sugar molecule, such as fructose or glucose, without the controlling action of an enzyme. Glucose reacts with proteins through the formation of a Schiff base between the aldehyde group of glucose and the primary amines of lysine and the N-terminus of the protein.
Glycation (glucose) reactants Glycation (glucose) products None None None H2O C6H12O6 Av: 162.1408 M: 162.0528
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
K, ^
Hydroxylation (proline)
Hydroxyproline is produced by hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase following protein synthesis (as a post-translational modification). Hydroxyproline is a major component of the protein collagen and plays a key roles for collagen stability. The sequence of collagen often follows the pattern Gly-Xaa-Hyp.
Hydroxylation (proline) reactants Hydroxylation (proline) products None None None O Av: 15.9994 M: 15.9949
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
P (?<=G.)P
Succinimide (asparagine)
Nonenzymatic deamidation of asparagines is a common modification of proteins. Deamidation proceeding through the formation fo succinimide intermediate followed by hydrolysis results in the formation of isoaspartate and aspartate in a molar ratio of apporximately 3:1.
Succinimide (asparagine) reactants Succinimide (asparagine) products None None None NH3 Av: -17.0305 M: -17.0265
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
7.34 N
Phosphorylation
A post-translational modification of proteins in which a serine, threonine or tyrosine residue is phosphorylated by a protein kinase by the addition of a covalently bound phosphate group.
Phosphorylation reactants Phosphorylation products Acidic 6.9 Acidic 1.2 None H H2PO3 Av: 79.9799 M: 79.9663
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
Y, S, T
Carbamylation
Carbamylation of lysine and cysteine residues and free N-termini is a nonenzymatic PTM that has been related to protein ageing. It can be artificially introduced during sample preparation with urea, thus affecting studies directed toward in vivo carbamylation. In aqueous solution, urea is in equilibrium with ammonium and isocyanate. The latter can react with primary amines of free N-termini and ε-amine groups of lysines and cysteine sulfhydryls to form carbamyl derivatives.
Carbamylation reactants Carbamylation products None None None CHON Av: 43.0248 M: 43.0058
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
K, C
Oxidation (methionine)
Protein oxidation is a covalent modification of an amino acid that is induced by reactive oxygen and is often a result of stress or contamination.
Oxidation (methionine) reactants Oxidation (methionine) products None None None O Av: 15.9994 M: 15.9949
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
M
Acetylation
N-terminal acetylation is one of the most common co-translational covalent modifications of proteins in eukaryotes, and it is crucial for the regulation and function of different proteins.
Acetylation reactants Acetylation products None None None H C2H3O Av: 42.0368 M: 42.0106
λ / nm ε / M-1 cm-1
214 0
240 0
245 0
250 0
255 0
260 0
265 0
270 0
272 0
274 0
276 0
278 0
280 0
282 0
284 0
286 0
288 0
290 0
292 0
294 0
296 0
298 0
300 0
302 0
304 0
306 0
308 0
310 0
312 0
314 0
316 0
318 0
320 0
K, ^